If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+45x+9=0
a = 8; b = 45; c = +9;
Δ = b2-4ac
Δ = 452-4·8·9
Δ = 1737
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1737}=\sqrt{9*193}=\sqrt{9}*\sqrt{193}=3\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-3\sqrt{193}}{2*8}=\frac{-45-3\sqrt{193}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+3\sqrt{193}}{2*8}=\frac{-45+3\sqrt{193}}{16} $
| P/2-p/3-p/4=3 | | (8x-20)=180 | | 7/3x+5x=1/3+1/3x | | 8x+74+2x+114=180 | | 6/7x-9/5=5x+1/2 | | 4/x-2-x/2x-4=7/3x-6 | | (3x-1)/4=(-5/11) | | ^y+8=5 | | 12+9x=8x-40 | | -18d+-18d−-2d−-16=-18 | | 3x+2(20-x)=30 | | (3x^2)-7-82=0 | | 3y|7=2y|3+4 | | 25=x−3(x+1) | | 18/5=8/5x+16/5x | | 6+(p-5)4=18 | | 4(p−5)+6=18 | | 18=4(p−5)+6 | | -92=-4(-2n+7) | | 8=(x-4)7 | | 7(x−4)=8 | | 7(h−4)=8 | | X+(x+3)+(x+5)=249 | | X+(x+1)+(x+3)=249 | | -178=6a-4(-1+8a) | | X+(x+2)+(x+4)=249 | | (3x^2)+2-110=0 | | 12x^2-780x=0 | | 15+c=55 | | 55=15x+2 | | 55=15x | | 2.6(5)+5.4(5)=k |